Note: I posted a shorter version of this as a comment over at Marica’s. Their topic for today is “When You Wish Upon A Star” and I thought I’d say something about Betelgeuse. Then I found myself wanting to talk about Rigel, too…so it just growed and growed.
There’s nothing political here. If you want a break from politics, read on. If you don’t, by all means save yourself the time.
Many stars have names. Here are a couple, both in Orion. Orion rises in the east shortly after sunset this time of year.
Betelgeuse is the bright orange star at the upper left of the big quadrilateral of Orion; it’s considered Orion’s shoulder. Rigel is the bright one at the lower right, generally considered to be Orion’s “foot.”
Rigel.
That’s the bright star at the lower right in Orion (if you’re in Australia, the upper left). That is one very, very bright star!! It doesn’t LOOK as bright as Sirius (the very bright star to the east and a bit south of Orion), but Sirius is about 8 light years away, and Rigel is 860 light years away…a hundred times as far. Yet it isn’t that much dimmer than Sirius. Sirius is the brightest star in the night sky, and Rigel is #7.
Rigel is 120,000 times as bright as the sun, intrinsically. If the earth were orbiting Rigel…well, it wouldn’t be. It would be getting 120,000 times as much energy and would be melted, then boiled away. (Imagine if the sun in our sky gave off over 100,000 times as much heat as it does!) The earth would have to be 364 times further away, which is to say 364 Astronomical Units (AUs), to get down to the same amount of EM radiation.
That’s ten times the distance to Pluto, to get the SAME amount of energy the Earth does.
Rigel is bluish in color, like most of the visible stars in the sky. That is because its surface temperature is some 12,100 degrees Kelvin, which is over 21,000 F.
(Have you ever seen anything that hot here on Earth? No. So you might be surprised to find that when things get that hot, they glow bluish. As things get hotter, they go from invisible (but you can feel the heat), to dull red, to orange (embers), to yellow (a tungsten bulb), to white (the sun)…to blue. Each with more and more heat, and towards the end, with more and more ultraviolet) In fact the only place to see things that are blue hot is in the night sky. (No the flames on your gas stove aren’t that hot–they are blue for a very different reason.)
Something that is blue hot is giving off more ultraviolet than visible light. So that 120,000 times brighter than the sun light from Rigel, is mostly ultraviolet. Our hypothetical planet at 364 AUs distance is getting most of its sunlight as UV. Proportionately less of it is coming as visible light. If you were outside on a clear day there, there’d be the feel of an overcast day, but you’d be getting sunburned in a hurry. And the “sun” would be this tiny point of painfully bright blue light.
A couple more things to say about Rigel: It is 21 times as massive as the sun, and maybe 80 times as wide.
Betelgeuse
Our other star is Betelgeuse. (“Beetle Juice,” if you must.)
Orion’s upper left shoulder should look a bit redder than the other stars (which will look bluish white). That is Betelgeuse.
Betelgeuse is a “red giant.” It is about 700 light years away (not quite as far as Rigel), and is anywhere between 90,000 and 150,000 times as bright as the Sun, intrinsically (it actually varies in brightness).
It’s redder because the surface is a lot cooler than our Sun, 3590K, not that far off from an incandescent light bulb. Yes, it’s at a different part of the red/orange/white/blue-hot continuum.
It’s 11 times as massive as the sun, but it is anywhere between 700 and 1000 times as wide as the sun! If the earth were orbiting Betelgeuse it would be INSIDE the star. A bit toasty!
Betelgeuse is so big that, as far away as it is, we were actually able to measure its diameter from here on earth in 1920! Most stars look like points in even a powerful telescope, but not Betelgeuse.
Earth would be comfortable at a similar distance from Betelgeuse, about 350 AUs, but because the star drastically varies in brightness, much more so than our sun, climate change would be far, far worse.
They’re Not Much Alike
Now, it turns out a star is actually a very simple thing. It’s a lot of gas, trying to contract under its own gravity. The main difference between stars should be in how massive they are.
Rigel and Betelgeuse are of similar masses (closer to each other, proportionately, than either is to the sun), yet Rigel, the bigger of the two, seems more like the sun than Betelgeuse. Hotter and bigger, but not swollen to a ridiculous size. In fact, astronomers place stars like Rigel and the Sun in a category called the “Main Sequence,” a progression from small, red stars up to giant blue ones. Some Main Sequence stars are the exact mass of Betelgeuse, and they’re not red and swollen.
Betelgeuse is not on the Main Sequence. It’s a different sort of animal.
What gives? Why are they so different?
To start finding out the answer, let’s look at their masses once again.
Did you notice how these stars are thousands of times brighter…but only ten or twenty times as massive?
Doesn’t that mean the star will burn itself out that much sooner? If Rigel has got twenty times the gas, but it’s 120,000 times as bright as the Sun, that means it’s burning through its fuel supply 120,000 times as fast, and it should last only 1/6,000th the time. (To be sure a star only burns what’s at its center, not the surface layers, so that’s not quite the right comparison to make.)
The sun is expected to last 10,000 million years (and we’re 4500 million years into that). Rigel’s lifespan, total, can’t be much more than 10 million years; it’s estimated to already be 8 million years old.
Rigel lives boldly, but very, very briefly, a cosmic butterfly.
Betelgeuse is of comparable brightness to Rigel, but half the mass. It’s ripping through its available fuel even faster, proportionately speaking. And yet its big and cool on its surface. It makes sense to be big, if it’s cool, or cool, if it’s big. It has a MUCH higher surface area than Rigel, so each square meter of it has to radiate a lot less, for the total output to be the same. And the way to do that is to be cooler.
But that doesn’t explain why it’s so different from Rigel, and our Sun, as to not be on the Main Sequence.
There’s more to the story. Lots more.
The Life Of A Star–Youth
As I said earlier, a star is a simple thing, really. It’s a big ball of gas that wants to contract under its own gravity. As it does so, it heats up, just like compressing the gas in a bicycle pump makes it get hotter. Heating it up increases the pressure, the pressure resists the tendency to contract. Eventually a balance is reached.
But that heat eventually radiates off, the pressure drops, and the star contracts. What one would see is stars glowing as they contract, shrinking as fast as the bleed-off of heat (and pressure) lets it.
Unless the star can find another source of energy, something that it can internally generate, to stave off the collapse.
And it does.
Any ball of gas sufficiently large (considerably larger than Jupiter) will eventually reach a point where the core is at a temperature of millions of degrees, and then the hydrogen starts fusing into helium. Four hydrogen atoms go through a series of reactions (exactly which series of reactions depends on the temperature, which depends on the mass of the star), to ultimately make one atom of helium. In the process, 0.7 percent of the mass of the hydrogen disappears–it becomes energy. It works out to 26.73 million electron volts of energy. (An MeV is a tiny amount of energy to us, but this is from four atoms of hydrogen, and there are about 600,000,000,000,000,000,000,000 atoms of hydrogen in one gram of the stuff…so, really, it’s quite a bit of energy!)
In fact, I’m going to point out that twelve atoms of hydrogen, fusing to three atoms of helium, works out to almost exactly 80 MeVs of energy. That will be important, later on.
So nuclear fusion gives off energy, lots of it. That energy heats the star up, and the contraction stops. The star finds a balance, and the star will stay pretty much the same size as long as it has hydrogen in its core to fuse to helium. (It actually gets a bit hotter as time goes on, but this is a very slow process.) Once it runs out of hydrogen, well, life will get interesting again.
The sun is at just the right temperature and pressure, inside, that it’s going to take ten billion years to burn all of its fuel (even though it’s burning 650 million tons of it a second), but that’s the right rate to keep it from either expanding too much and cooling off (which would allow it to contract again, heating it up), or contracting too much and heating up, which would cause it to expand again and cool off. It’s in balance, and it will stay in balance for another 5.5 billion years, when it runs out of hydrogen.
Back to Rigel.
Rigel, like the sun, is burning hydrogen, to make helium. It’s doing so at a rate far faster than our sun; it has to to maintain the very high temperature to keep twenty times the mass of the sun from continuing to collapse. You see, the bigger the star, the hotter it has to get to keep from collapsing, but the hotter it gets, the faster the heat radiates away, and that means, the faster it burns through its fuel. And the shorter it will live.
So a star like Rigel is heavy, very hot, and blowing through its fuel FAST.
So now we understand why big stars are so much hotter and brighter.
But that just makes Betelgeuse more puzzling. It’s half as massive as Rigel, but it’s about as bright (it shouldn’t be), and it’s much cooler than our sun (again, it shouldn’t be). The fact that it is so swollen, comparatively, means it should be much, much hotter at the very center, but wouldn’t that just make it even brighter?
What makes it so large, yet cooler than the sun at the surface?
The Life of A Star–Middle and Old Age
Well, it turns out, Betelgeuse is a star that has already run out of hydrogen!
As I said, when a star runs out of hydrogen, life gets interesting. A very small star, lighter and smaller than our sun, basically is done at this point. It will just contract until the atoms are touching each other, cooling off over billions of years. But this doesn’t happen until it’s tens of billions of years old. In fact, it would have to be older than the universe for this to have happened to it before now, so there shouldn’t be any of these out there.
A star our sun’s size, or larger, will shrink too, when it runs out of hydrogen, but the core will get hotter and hotter. Again, this will only be temporary heat up, unless another source of energy is found.
That source does exist. If the star is massive enough (and the sun is, therefore so are Rigel and Betelgeuse), eventually the core gets much hotter than it was before, with higher pressure, and helium fuses to become carbon. It takes three helium nuclei to make a carbon nucleus, which means it took twelve of the original hydrogen atoms to make the one carbon nucleus.
But this is actually desperation.
Turning three helium nuclei into one carbon nucleus only releases 7.25 MeVs of energy. In other words, less than a tenth that the star got making the helium in the first place (80 MeV). Reburning the ash, releases less energy. So to put out the same energy every second as it did before, it has to go through its fuel over ten times faster, by weight.
Yet the star must sustain a HIGHER core temperature than it was doing before. So going through the helium ash ten times faster than it went through the hydrogen…isn’t enough!!
So the star gets hotter, and hotter. The good news is all this heat will cause hydrogen *outside* the core to fuse too, which means the star gets a bit of a “boost.”
But that higher core temperature causes the star’s upper layers to expand more–that’s what makes it big–and the much larger sphere has to radiate less energy per given area–which is what makes it cool.
Because the helium-to-carbon fusion is so much less productive, and the star needs more energy, it can only stay in the helium burning phase for a very short time.
Our sun will have a helium burning phase. It will turn into a red giant, like Betelgeuse, but much smaller. We’re not sure whether it will swallow the earth, but even if not, life will be toast here. But that’s five billion years from now, so you still have to do your taxes next year.
Once the helium starts to run low…the star, if it’s massive enough, moves on. (The sun is not massive enough. Helium-to-carbon will be the end of the road for it.)
The star contracts, heats up, and starts fusing helium + carbon to make oxygen, helium plus oxygen to make neon, neon plus helium to make magnesium, or maybe even go directly: carbon plus carbon to make silicon. Each of these reactions requires more heat, and produces less energy per unit mass than the one before it.
So these phases are each shorter than the one before it. But the core being hot enough to (say) make oxygen makes the layer right outside the core hot enough to make carbon, and the layer outside of that is making helium. The star starts to resemble an onion with all these layers, with the one in the center going at a furious rate, desperately trying to get more and more energy out of a less and less energetic reaction, since it is ultimately holding the star up from collapse.
The Death of a Massive Star.
Eventually the star has a core of iron. This core–much, much bigger than the earth and made entirely iron–probably is built in one day; that’s how fast the star must rip through its fuel to produce the iron, and not collapse.
We’re well into the region of diminishing returns. But now we move into the realm of negative returns. Moving beyond iron actually consumes energy.
The star is done. It collapses. The heat of collapse actually does cause further reactions, but they just suck more energy out of the system, making the collapse even faster. But make no mistake–the star’s core is getting hotter and hotter, and more and more reactions are happening in it. Elements much heavier than iron are made, instantly. Huge amounts of neutrinos are generated–in fact they carry off most of the energy.
But what’s left over is still titanic. The star explodes. The mass of the outer layers is consumed instantly, and now, for just a few weeks or so, the star outshines a billion or more normal stars. It can be brighter than everything else in its galaxy.
This is a supernova.
And what it leaves behind is a neutron star, or maybe even a black hole. Not ordinary matter at all. It’s done generating energy, it’s done being a star as we know it.
R. I. P.
Death Watch for Betelgeuse
Remember when I said Betelgeuse was out of hydrogen in its core?
We know it’s done with hydrogen in its core, but don’t know exactly what it’s doing right now, for certain. Many of those higher reactions could be taking place simultaneously in different layers deep inside the star, but we have no real way of knowing. How many layers of different fusion are inside Betelgeuse?
If, today, it is working on making iron–tomorrow, it goes KABOOM. You will be able to see it in the day time, from eight hundred light years away. At night time, well, many nocturnal creatures will have their routines disrupted–it will probably be brighter than the Moon. Perhaps for their sake, we should hope it goes kablooey! during northern hemisphere summer time when Betelgeuse is not in the night sky.
It will happen. We don’t know when, but sometime in the next hundred thousand years or so, Betelgeuse will light its own funeral pyre. It could be tonight. It could be ten thousand years from now. And once the supernova cools off–which will take a few years–Orion will lose his shoulder.
And Rigel isn’t all that far behind, in cosmic terms. Give it a few million years; it will run out of hydrogen, swell into a red giant bigger than Betelgeuse, and begin to die.
Whoever is watching at that time, will hopefully be consoled by the thought that all that stuff flung out into space is what will eventually make new stars, new planets, and, maybe, life.
For after all, that’s how we came to be. Everything in your body, except the hydrogen, was brewed in a star that blew itself to bits, billions of years ago. So too with every rock on earth, and all the oxygen in the air, and the oxygen in the water. All from stars that died, billions of years ago.
So…when Betelgeuse blows, it will light up the night sky…and this will last for a couple of years?
Wow.
I would think that that could affect a lot of things.
Indeed it will!
The supernova in 1054 remained visible (but just as a bright star) for two years…but it was ten times further away than Betelgeuse. I imagine there will be a VERY bright star in Orion for weeks, then it will begin to fade, and maybe after three or four years, you’ll need a telescope to see it.
And believe me, astronomers will be looking at it a LOT, since we’ve not had a nearby supernova since the telescope was invented. Our best one was back in 1987 but even it was in a nearby galaxy!!
It was first noticed by a guy who had stepped outside an observatory to take a smoke break, looked up, and saw a new “star” in one of the Magellanic clouds–tens of thousands of light years away!!
Amazing.
It would really be something to witness such an historic astronomical event!
Kinda hoping it blew up about 639 light year ago so we could use it as our mega fireworks for PT’s 2020 election victory celebration. See Steve, I turned this into something political. Lololol
p.s. Ty, interesting topic.
LOL. You did indeed.
Sometimes, when I see Orion, I stare a bit at Betelgeuse. What if it happens Right Now? (Meaning, of course, what if it happened 640 years ago and the light is about to reach us Right Now.)
I think that would be the grandest thing to see.
Well if I’m wearing a hat, I’ll remove it. Betelgeuse is like an old friend, and I will have just watched it die.
We might join you for a eulogy and memorial service. 🙂
Here’s..ya song Steve…..!!!!
I actually thought about posting a Roxette song (Stars) on the thread over on your site, but it’s fast…and literally, it has almost nothing to do with stars; they get a passing mention in each verse. (So why did they name it “Stars”?) The mood over there was for slower, more poignant music.
Ha!!!! Me….trying So hard… to …getcha!!! Ah …Did?
I didn’t watch the whole thing (it looks like there’s a lot of crap before the song actually starts) , so if there was a getcha, I didn’t catch it.
You…are…cracking me up…!!!! lol
Well now I’m watching the whole thing…about 2 mins in…waiting for a point…
I……tried?🤣
I’m just scratching my head, at this point.
You’re obviously trying to tell me something, but I haven’t seen it.
If it’s something in the lyrics, I simply can’t make them out.
You…are…killing me!….Ded!….🤣
Will there be any advanced warnings about Betelgeuse going super nova? X-rays or something?
Please write more about the stars, Steve. I once read Cosmos (Sagan) and found his writings to be excellent for those of us not knowledgeable about space. Your writings are also nice and clear to us newbs.
Ok, here are some suggested topics for you to explain in the future:
1. You mentioned pulsars. What are they? Spinning magnetic chunks of iron? Why do they matter?
2. Quasars. I know that they are at the distant edge of the known universe. But, that’s all I know.
3. I read once that Jupiter was too small to become a star. How close did it come? What about Saturn?
4. I read once that Jupiter and Saturn protect the inner planets from debris due to their gravities. True?
5. More about famous stars.
I’ll give short answers to some of these.
1) Pulsars are magnetic–very, very much so, but they’re not made of iron. The entire star is one gigantic solid mass of neutrons. More neutrons than there are in the earth, by several orders of magnitude! There might possibly be some “ordinary” atoms at the very surface, but very highly compressed because the surface gravity on a pulsar is immense, hundreds of thousands of Gs. The reason it’s called a pulsar is because it typically spins, maybe a thousand times a second, and if the magnetic pole of the thing sweeps across the earth, even from thousands of light years away, we get a blip of radio noise from it. Regular as a metronome; so regular that before we knew what they were, some thought they were ET signalling.
Here’s a video. In fact the first one they actually highlight is the pulsar in the crab nebula.
2. Quasars, as near as I can figure it, are the black holes in the centers of galaxies managing to eat a LOT of matter. They are distant, because that’s the sort of thing that happens in very young galaxies (and those would have to be far away, so we can see their light still arriving today.)
3) The figure I remember reading was that Jupiter needed to be eighty times more massive. That may have been updated in the light of later knowledge. A quick look at wikipoo says anywhere between 75 and 87 jupiters, depending on how much “metallicity” the star has (i.e., elements heavier than helium). Jupitrer is 317 times as massive as the earth, and Saturn is 95 times as massive as the earth, so saturn is less than a third the mass of jupiter, so you can adjust accordingly.
4) Pretty much true. Jupiter ends up deflecting a lot of crap (such as comet Shoemaker Levy).
5) We’ll see. If I get serious, I may do something about Sirius sometime. It has an interesting companion star.
I’ve got the perfect title for this article – Whole Lotta Hot Gas.
Steve, you have a knack for taking complex info (and dull) and making it readable and interesting to someone non-scientific like me. Really well done. I was going to say something at Marica’s when you posted it but I was busy with IRL stuff.
Thanks! Hope you’re doing well!
I edited it heavily when I brought it over here, practically reversing the order of what I said in a few cases. I hope I improved it, but who knows?
You are a born teacher!
We love your science and history lessons – you are the WQTH official stars and coins expert!
Very enjoyable! I knew very little about any of them – Orion, Sirius, Rigel or Betelgeuse. Good stuff!!!
Good Morning Starshine!!!!
Good Morning, Steve! Thanks for this – it’s a keeper!
Thank you, Steve. Orion is my favorite constellation. He’s like an old friend. All the new info and star names are fascinating.
Very nicely done. An appreciation for science is a love of this wonderful universe we get to play in.
Wondering if any of the other stars/suns have planets and if there is life on them?
Or is earth chosen alone to display God’s ability to create infinite variations of birds, fish, insects, animals, plants, trees, geological formations, people?
I love this Louie Giglio video about space, stars and the greatness of GOD.
Well, we’re very confident about other planets. We’ve detected stars “wobbling” as planets orbit them, and we’ve even been able to image some planets as pinpoints. Believe it or not the Palomar Telescope is doing some of that work (that sucker was built in the 1930s-1950s and they’re still making good use of it today).
Life–we still don’t know.
I don’t see any reason there couldn’t be other life out there…but maybe it’s nothing more complex than bacteria. Really there’s a lot of speculation out there.
One argument against intelligent life being out there is that if it was just a few million years older than us, it would have figured out how to get here…so where are they? That’s called the Fermi paradox. Maybe it’s incredibly rare…or WE are the oldest intelligent species? Who knows?
Carl Sagan once did a statistical analysis of the odds of life being out there. His conclusion was very nearly 100%. I looked for this on the net but couldn’t find it. Just my memory…
A subject rife with speculation. There are too many things we simply don’t know the probability of, because although we know they happened once, we don’t know how they happened. For instance, we do not know how life began, so we have no way of assessing how likely it is even given earthlike conditions.
since it’s only 6 something in the am here, I am bookmarking this Steve. I loved my astronomy class in college and look forward to reading (and enjoying) this after coffee and the news…(Flep has me spoiled).
thanks!!